
The Functional Architecture and Interaction Model
of a GENerator of Intelligent TutORing Applications

A. Kameas
Department of Computer Engineering and Informatics, University of Patras, Greece

P. Pintelas
Sector of Computational Mathematics and Informatics, Department of Mathematics, Universiry of Patras, Greece

This article presents the functional architecture and
the interaction model of GENITOR, a generator of
Intelligent Tutoring Systems (ITSsj. The major design
issues that arise during the functional design and
development of an ITS-generator concern the provi-
sion of mechanisms capable of supporting the descrip-
tion of the teaching subject domain and the specifi-
cation of pedagogical features of the ITSs that it
produces. The system described in the article provides
ready-to-use yet flexible solutions for the instructional
features of the developed ITSs. In this way, authors
can concentrate on the compilation, description, and
design of training material that relates directly to their
area of expertise. Interaction between GENITOR and
authors has been designed using IDFG, an interaction
model that supports the representation of multiple
aspects of interaction, including data flow, control
flow, and task decomposition. As a consequence of
using this model, the tasks that make up the authoring
process are visualized by a number of authoring tools
that are grouped into three subsystems: the reusabil-
ity subsystem, the authoring subsystem, and the exe-
cution subsystem. The functionality of these subsys-
tems and the tools they contain are described, as well
as interaction with the overall system. Finally, conclu-
sions drawn from the development of two ITSs using
the system are presented in order to validate the
design. 0 1997 by Elsevier Science Inc.

1. INTRODUCTION

The major design issue that developers of generators
of Intelligent Tutoring Systems (ITSs) face is the
provision of mechanisms capable of encoding the

Address conqxmdence to hf: P. l%ttelas, Department of Mathe-
matics, Unhmity of Patms, Greece.

requirements of the different components of the
tutoring process. Mechanisms of this kind have to
support the representation of what information is to
be taught (the domain) and of how the training
process can be carried out as efficiently as possible
(the instructional strategy). The former includes all
kinds of domain knowledge (declarative, procedural,
etc.). Instructional strategies heavily depend on the
components of the training process: who will receive
the information being taught (the trainee), in what
context the teaching process has to take place (the
tutoring discourse) and which means are used (the
tutoring interaction) (Rickel, 1989; Mispelkamp,
1992).

Several design alternatives have been proposed,
but no system has been implemented so far that
meets all these design issues satisfactorily (Gerogi-
annis et al., 1993). Proposed solutions can be broadly
classified into two groups, those that use AI tech-
niques, and those that do not. Several commercially
available authoring systems exist that exhibit impres-
sive multimedia presentation capabilities but make
limited provision for instructional design. On the
other hand, there are systems developed in the con-
text of research projects that use expert modules to
meet the design requirements mentioned above.

One such system, GENITOR,’ is presented in the
article.2 Design decisions were based on the results

’ Genitor (pronounced je’nitor) is a Greek word that means the
on; who gives birth, who generates.

The focus of presentation will be on the design of the internal
model of the authoring process that the system uses to interact
with authors.

J. SYSTEMS SOFIWARE 1997; 36:233-245
6 1997 by Elsevier science Inc.
655 Avenue of the Americas, New York, NY 10010

0164-1212/97/$17.00
SSDI 0164-121Z95)00099-M

234 J. SYSTEMS SOFTWARE
1997; 36933-245

A. Kameas and P. Pintelas

of a survey of other authoring tools combined with a
requirements analysis of a target user group (Pinte-
las and Kameas, 19931, that consisted of medium or
high-level managers who needed to train their per-
sonnel in the use of methodologies of a certain
kind? Several interesting characteristics surfaced
during analysis: most important of all, managers
recognized the need to use computer-based tools for
methodology training (Pintelas et al., 1992). They
were, however, unwilling to invest time in developing
a “polished” training application, but instead, they
preferred to focus on describing the knowledge that
is to be taught, using the simplest instructional tech-
niques (which sometimes reduced even to a mere
presentation of that knowledge). Consequently, they
were not satisfied with the commercially available
authoring tools, which mostly supported impressive
presentations of unstructured knowledge.

The proposed system provides authors with tools
that may be used to completely represent the knowl-
edge domain of a training application, while ready-
to-use solutions are provided for most of the auth-
oring activities that relate to the specification of
instructional strategy. It adopts an intermediate so-
lution between authoring environments that include
all necessary tools in their architecture (tools of this
kind are described in Otsuki and Takeuchi (1985);
Mispelkamp (1992); Wallsgrove (1992)) and those
that provide a platform for integration of other
existing tools (such as Derks and Bulthuis (1992);
Philips and Nuns (1992)). Development of a training
application using the former is usually pedagogi-
cally-driven, while the latter place emphasis mainly
on the reusability of intermediate courseware prod-
ucts of different complexity levels (Olimpo et al.,
1992).

The system user interface is “minimalistic” in the
sense that only the necessary interaction elements
are used, supported by a consistent interaction
metaphor. Impressive features, such as natural lan-
guage processing, or drag and drop facilities are not
supported in an effort to make the system usage
“transparent” even to authors who are noncomputer
experts.

GENITOR produces intelligent training applica-
tions in subjects that are not necessarily related with
each other, unlike systems like GUIDON (Clancey,
1987), SEDAP (Aiello and Micarelli, 19901, or SO-
PHIE (Brown et at., 19821, which generate and solve

3 This analysis was carried out at first by using questionnaires,
and, subsequently, with demonstrations of prototypes of the sys-
tem.

different problems in the same teaching subject do-
main. Applications developed with it are stand-alone
in the sense that they may be used independently of
the system.

The next section describes the authoring process,
as it is represented in GENITOR. Section 3 contains
a description of the system-author interaction, and
Section 4 presents the model that was used for
interaction specification. Section 5 presents the
functional architecture of the system. A validation of
system design and operation is contained in Section
6. In the last section, conclusions drawn and experi-
ence gained from system development are pre-
sented, together with future research directions.

2. SUPPORT OF THE AUTHORING PROCESS

Although no standard methodology exists for CAI
systems or ITSs design and development, the pro-
posed life cycle models (Keller, 1987; Roblyer, 1988;
Alessi and Trollip, 1991) have many phases in com-
mon (Gustafson, 1991; Uden, 19921, including re-
quirements analysis, courseware specification, de-
sign, implementation, and evaluation and revision.

GENITOR can be used for the last three phases
of the life cycle of training applications. The initial
activities of the development cycle that amount to
material compilation and course planning have to be
carried out manually. Before proceeding with actual
development, authors should design the application
knowledge domain base. A training application de-
veloped with GEMTOR attempts to transfer two
kinds of knowledge: procedural knowledge on how
to apply a methodology, and declarative knowledge
that provides a theoretical background for applica-
tion of the methodology.

A methodology is any procedure that consists of
distinct, partially ordered tasks, activities to carry
out each task and results (outcomes) of each action
called artifacts. Methodologies that can be taught
with ITSs developed with the system have well-de-
fined properties (Pintelas et al., 1992) and must be
of a certain, albeit general enough, internal struc-
ture. Such an ITS aims at transferring to the trainees
not only the correct ordering of carrying out tasks
and activities, but also the ability to recognize the
appropriate context of application of the methodol-

ogY*
The declarative knowledge in a GENITOR appli-

cation consists of Application Learning Units. A
Learning Unit (L-U) is an elementary block of knowl-
edge (a piece of text, a picture, etc.) composed of a
body with the LU content and a set of static descrip-
tive attributes (Kameas and Pintelas, 1994). LUs can

daisy
Rectangle

Presentation of GENITOR J. SYSTEMS SOFlX’ARE 235
1997; 36933-245

be used independently of any instructional strategy
and can take part in constructs called Application
Leaming Units MWs), which form the hypermedia
domain base of each application. The properties of
ALUs are described by two classes of objects
(Yazdani and Pollard, 1992): those that contain static
information used to identify the unit and those
representing dynamic information that describes the
behavior of the unit.

An approach based on the Discourse Manage-
ment Network (DMN) (Woolf, 1987) mechanism is
used to model tutoring discourse. A DMN is a finite
state machine that uses nodes and arcs to store
information; arcs are activated depending on this
information and external input. Conceptually, a
DMN is a top-down refinement of high-level tutorial
goals through the strategies and tactics that imple-
ment them (Rickel, 1989). The learning scenario
embedded in an application developed with the sys-
tem is called reaming cycle and is made up of stages.
A stage is an object that implements one pedagogic
state of a DMN and constitutes an integral applica-
tion module with respect to instruction.

GENITOR adopts a two-level structuring of the
instructional strategy (Pintelas et al., 1992). Initially,
authors have to define the learning cycle of the
application by specifying which stages it includes.
Since stages can be regarded as the pedagogic states
of a DMN, at this level, authors compile the instruc-
tional design theory (Gagne et al., 1988) to be fol-
lowed.

Then, authors have to specify the type and con-
figuration of stages that will make up the learning
cycle, out of seven predefined stage types that the
system offers. Each stage encompasses an instruc-
tional strategy that is defined by a set of tutoring
actions that the system will take when the stage is
executed during training. Each action represents a
tutoring objective; these actions implement the
strategic states of a DMN. Authors can select which
of these actions will be active during ITS execution.

Each tutoring action offers the trainees a set of
operations that can be used in order to achieve the
training objective that it represents. These are made
available through the user interface of the ITS and
depend on the tutoring context. The tactical states
of a DMN correspond to the set of operations or
functions that are offered to the trainees during
tutoring.

This is an intermediate solution between guiding
authors through the phases of some instructional
development model, enabling them to develop
(probably from scratch) a tutoring application, or
providing lesson abstractions (templates) onto which

authors will be building a “new” course. The former
approach is more flexible but results in a lengthy
development process, while the latter produces
courses quickly, the functionality of which is un-
avoidably constrained. After all, such a system should
be easy to use and at the same time make available
the necessary instructional design expertise in an
adaptive way (Duchastel. 1990; Spector and Mu-
raida, 1992).

In order to overcome the complexity of the au-
thoring process which is due to the highly dynamic
nature of tutoring process, GENITOR employs two
expert systems (Zaharakis et al., 1994). Methodology
Expert System (MES) supports the description of
the structure and dynamics of the methodology,
during authoring and is responsible for its presenta-
tion during tutoring. An expert system was used for
this task in order to relieve the authors from having
to anticipate all the possible (correct and incorrect)
sequences of combinations of methodology elements
that trainees may form and then provide system
responses for each. Authors simply describe these
elements; it is the task of MES to ensure their valid
ordering and to mediate tutoring interaction. Do-
main Expert System (DES) is employed during the
presentation of ALUs. Again, the decision to employ
an expert system aims at relieving the authors from
having to explicitly describe all the associations be-
tween ALUs and the parts of the learning cycle.

During application design, ALUs (more specifi-
cally, the description of their behavior) may be added
to it even if the constituent LUs (the ALU contents)
have not yet been constructed. Integral parts of the
methodology (i.e., a complete task) may be tested
without the whole methodology being completed.
Furthermore, authors may add the stages of the
learning cycle, even if the tutoring actions or opera-
tions of these stages have not yet been fully speci-
fied.

The well-defined internal structure of training ap-
plications developed with GENITOR permits the
prototyping of any application part of any degree of
completion. Nonexisting (but required) application
parts are temporarily added as having “null behav-
ior” and are treated in a default manner; they are
used as place-holders during prototyping. In this
way, authors can quickly develop a prototype of an
ITS, overcoming the production paradox (Carroll
and Rosson, 1987).

Training applications developed with the system
have all the primary and most of the secondary
instructional characteristics proposed in Merill
(19831. No authoring language is supported because
the adopted hybrid scheme of the authoring process

daisy
Rectangle

236 J. SYSTEMS SOFIWARE
1997; 36933-245

makes the need for such a language obsolete. All
that is required is a good understanding of the
authoring process and of the nature of the applica-
tions that can be developed with this system.

3. WORKING WITH GENITOR

The authoring process is regarded as a set of author-
ing actions, which are grouped with respect to their
outcome. Each group corresponds to an integral
authoring phase and is visualized with an authoring
tool. All tools are accessible from within any tool,
but authoring contexts may not overlap, allowing
only one tool to occupy the screen at any time. Each
tool is used for the development of the correspond-
ing tool object, which represents a subgoal of the
application construction process. The abstract no-
tion of tool object physically corresponds to one
application file. All tools will have to be used for the
achievement of the ultimate goal: the development
of a training application.

A training application developed with GENITOR
consists of a set of information files, which, except
LU content files, are made up of entries. A file entry
is defined as a set of components; an entry com-
ponent is an atomic application parameter. The de-
velopment of the application is thus a repetitive
process of file entry manipulation that can be de-
composed into atomic subgoals of assigning values
to entry components.

In order to overcome the assimilation paradox
(Carroll and Rosson, 1987) and avoid any transfer-

A. Kameas and P. Pintelas

ence phenomena caused by the transfer of interac-
tion experience with other systems, a uniform inter-
action metaphor is used for all tools. Tool user
interfaces are consistent, look alike, and function
more or less in the same way4 by using interaction
elements (such as menus, buttons, controls, etc.) that
follow established standards.

The screen window of an authoring tool is divided
into two areas: the information area at the left and
the action area at the right half of the screen (Fig-
ures 1 and 2). The former displays the current state
of the tool object in the main data area and the
planned state transition in the current data area.
Transitions on the state of an object are caused on a
per entry basis: authors build the new entry inside
the current data area, and then copy it into the main
data area.

Inside the action area, the authoring actions that
will cause a state transition towards the achievement
of the subgoal represented by the tool are visualized.
The authoring actions that assign a value to an entry
component are visualized with controls. Two kinds of
controls exist: input controLF and select controls. When
using the former, authors have to type the value of
the component, while the latter present a list of
predefined and mutually exclusive values for them to
choose from. One input control (namely, “Add

4 Only the various LU content editors do not conform lo this
model of interaction.

Figure 1. The user interface of the Discourse Manager authoring tool.

daisy
Rectangle

Presentation of GENITOR J. SYSTEMS SOFTWARE 237
1997; 36~233-245

lu hat ix m audit matrix?

TImI .txt t
Yhat is brand use segmentation?

IIYDEC. txt

- ____~...__._ ~~~~~~~~~.~ ~~.~

Figure 2. The user interface of the Domain Manager authoring tool.

Learning Unit”), is depicted in Figure 3. Using it,
the authors can add an ALU to the application
domain base by specifying its title. The title of the
ALU must either be typed inside the blank area next
to the word “unit”, or be selected from a list of
available ALUs (by pressing button “Select”). Press-
ing the “Add” button causes the addition of the
ALU to the domain base, and pressing the “Erase”
button causes the contents of the control to be
erased.

Using all the controls of a tool, authors can spec-
ify an entire entry. The grouping of controls depends
on the context modeled by the associated tool. For
example, the tool responsible for the specification of
the learning cycle of the application (namely Dis-
course Manager shown in Figure l), contains input
controls “Add Stage” and “Add Parameter List”.
The former is used for stage selection, while the
latter is used for the description of stage execution
parameters (i.e., termination criteria, etc.). Only one
control may be open at any time, thus avoiding the
overlapping of elementary authoring contexts.

Figure 3. One of the controls that represent elementary
authoring actions.

Reusability is supported through the various selec-
tors, which are a special kind of controls. Selectors
are directly managed by the reusability manager of
GENITOR. In effect, they provide the results of
system-specified queries on the reusability bases of
the system. These queries recall a list of application
parts that have similar properties with respect to the
purpose of the context from within which they were
posed. This means that the contents of the list
depend on the tool that was open and on the control
that was used to activate the selector. Two kind of
selectors exist: singZe selectors, which permit the in-
sertion of only one object at a time, and list selectors,
which are used to specify a list of objects for inser-
tion.

In this way, authors may develop an application in
a top-down way (first by designing its learning cycle,
then the structure of its domain, and then by con-
structing the LUs, which have to be inserted from
the reusability bases using the reusability manager),
or in bottom-up (starting from the development of
the LUs and moving towards definition of tutoring
components), or in a mixed procedure. Selectors
function as the channels that link together the phases
of design and of implementation.

Activities that do not belong clearly in the author-
ing process, such as file loading, saving, communicat-
ing with other tools, or changing the context, are
represented with menus or buttons.

Apart from what authors see, each tool tacitly
supports the authoring operations and prevents them
from making serious mistakes by holding internally a

daisy
Rectangle

238 J. SYSTEMS SOFTWAFG
1997; 36233-245

representation of its operation, where action closures
and integrity ncles are represented. Only correct data
are copied from a control to the current data area,
which means that only correct elementary authoring
actions are allowed to have any effect. Each tool
performs a second round of data integrity checks
when the contents of the current data area are to be
copied inside the main data area, in order to ensure
that a safe change in the state of the tool object is
about to happen. Unacceptable data are not rejected
but are marked as deleted, which means that it will
not be taken into account during application execu-
tion. Actions that produce deleted data are consid-
ered as passive (Thimbleby, 1990) and have no effect
on object state.

On the other hand, authors are never allowed to
exit a tool in the middle of a sequence of actions,
abandoning an incomplete plan, and leaving a sub-
goal partially attained. In such cases, each tool com-
municates with the author through jbuting controLs
and messages. Floating controls are used when the
tool urgently needs information of a certain kind;
they are two-way communication channels. Mes-
sages are used to inform the authors of a situation
that has emerged. Each message clearly describes
the current context, the action that led to the cur-
rent state and the state itself and proposes the
action to be taken; authors may accept or reject this
proposition (sometimes there is no alternative but to
accept the proposed system action).

4. THE INTERACTION MODEL

During the design of GENITOR, the IDFG model
(Interactive Data Flow Graph) (Kameas et al., 1993)
has been used to describe the interactive behavior of
the system. This model regards interaction design as
software process design and uses a high-level Petri
Net model (Reisig, 1992) extended to include cogni-
tive aspects of interaction (Kameas et al., 1994).
IDFG models an interactive application as a set of
communicating graphs; each IDFG is a bipartite
graph.

Nodes are of two different types: links and actors.
Actors represent the goals of different levels that
authors may achieve by using the system. Links are
used to describe events that take place in the sys-
tem, actions that lead to the achievement of goals,
the context inside which these actions may take
place, or conditions that represent availability of
actions or context. In addition, they represent roles
in the authoring process and support data modeling.
Links store tokens, which are transported across the

A. Kameas and P. Pintelas

directed arcs that connect actors to links and links to
actors.

Actors can represent the entire goal-subgoal de-
composition structure of user plans. Achievement of
a goal causes the firing of the corresponding actor.
Three kinds of actors are used:

action actors, which model the low-level goals that
can be achieved by using the interactive applica-
tion.

context actors, which represent the structuring of
low-level goals into higher-level macro-goals which
can be achieved through the user interface of the
application. Context actors may be refined into
structures of lower level actors.

library actors, which are system-defined actors with
predefined functionality. They are used during the
refinement of context actors.

In this way, the implementation of high-level in-
terface functions is separated from that of low-level
authoring actions, thus achieving transparency in
system usage and interface independence at the
same time (Thimbleby, 1990). The number of action
actors is finite and equal to all the commands sup-
ported by GENITOR. The task of context actors is
to correctly interpret authors’ actions in order to
appropriately decompose their goals into subgoals
and so that eventually the correct action actor will
fire.

Links are typed; each link may store tokens of its
type only, while the existence of a token has differ-
ent meaning depending on the link type. Available
link types are user action, system action, condition,
data, goal, incommunication, outcommunication. This
set of types permits the description of several per-
spectives of an interactive application (Kameas
et al., 1994) (i.e., causation, cognitive aspects, system
behavior, etc.), which, when combined, produce an
integrated, consistent, and complete model of the
interaction process (Curtis et al., 1992).

Execution (firing) of an actor is determined by
rules associated with it; rules include the input links
of the actor in their left side (if-part) and its output
links in their right side (then-part). Then, tokens are
consumed from those input links, and tokens are
produced in those output links of the actor that take
part in the rule that caused the firing.

At any moment, there exists a number of actors
(the actor-ready list) that represent the goals avail-
able to the authors. Each goal can be achieved by
the authors causing the appropriate event. In IDFG,
a state is defined by the set of actors in the actor-

daisy
Rectangle

Presentation of GENITOR J.SYSTEMSSOFTWARE 239
1997; 36:233-245

ready list, or equivalently, the set of user or system
actions that can fire the actors in the actor-ready
list. Since these actions correspond to goals in a
lower-level, it can be equivalently said that a state is
represented with the set of goals that may be
achieved as a consequence of user or system actions
permitted by the actors in the actor-ready list. Each
actor firing modifies the distribution of tokens on
links and consequently produces a new state. Thus,
commands are modeled with actor firings and se-
quences of commands with actor firing sequences.
Every allowed author action must belong to a goal-
leading sequence.

In Figures 4 and 5, two snapshots of the IDFG
that represents interaction with the control of Fig-
ure 3 are depicted. Action actors are represented
with black rectangles, context actors with bold rect-
angles, event links with bold circles, data links with
diamonds, context links with dotted circles and con-
dition links with plain circles. Black dots inside links
are tokens.

All the actions supported by a control belong to
the same context, as represented with goal links and
are modeled with IDFG actors.

In Figure 4, context actor A4 represents the sub-
goal “Add Learning Unit” (link g). This actor be-

A4
(AMOS I

9.
c.A4 I,,;

:
c.A4 r

.- -. ua3
T

j
$1 A con1

:__:

t$: con1
A6

dl b
ACTOR-READY LIST contains actors: A4, .~

Figure 4. The IDFG that represents interaction with the
control of Figure 3 (snapshot 1).

A4
C AWBS 1

dl 6
ACTOR-READY LIST contalns actors: A4, AS, Al, A2, .

Fire 5. The IDFG that represents interaction with the
control of Figure 3 (snapshot 2).

longs to context “Specification of the ALU library”,
as described by input context link c. Its firing rule is
c, g --) cOK, dl. Library actors ANDS (stands for
AND Start) and ANDE (stands for AND End) de-
scribe the internal structure of A4: in order to add a
learning unit, authors must first “Specify Unit Name”
(context actor AS) and then “Confirm Name” (ac-
tion actor A6). Precedence among these subgoals is
described with condition link con1 (“UnitName-
Changed”). The specification of the unit name can
be done in one of three ways: by typing directly
inside the input line of the control (action actor A3),
by using a selector (context actor Al), or by simply
erasing the contents of the input line (action actor
A3). The structure described by library actors ORS
(stands for OR Start) and ORE (stands for OR End)
means that it is enough for one of the actors to fire
in order for the subgoal represented by context actor
A5 to be achieved. Authors have to execute the
appropriate actions in order to cause actor firing
(i.e., the firing rule of actor Al is: c.A4.AS, PressSe-
IectButton + c.A4.ASOK, con2).

By clicking on the “Add Learning Unit” item of
the control menu, a token is produced in link g and

daisy
Rectangle

240 J. SYSTEMS SOmARE
1997; 36933-245

actor A4 fires (Figure 4). Then tokens are produced
in links c.A4 and c.A4.&, and actors Al, A2, and
probably A3 and A6 (it depends on the value of
links con2 and conl, respectively) are added to the
actor-ready list (Figure 5). By clicking on the ADD
button of the control (which is available only if the
unit name has changed, as described by condition
link conl), execution of A4 terminates and the data
item “unit name” is returned in data link dl.

A correspondence exists between the structuring
of interaction as described by IDFG and the user
interface elements used. Tools are the highest level
context actors, which are composed of context actors
that represent controls, buttons, selectors, and menu
items. These are eventually composed of action ac-
tors. Data links are used to transfer data to and
from files and between the screen areas, while com-
munication links are used for tool synchronization.
Condition links are used for representation of screen
situation. Links also perform integrity checking; an
integrity error causes a system action that appears in
the form of a floating control or a message. All these
actions are explicitly represented in the user inter-
face of the system, conforming to the principle of
observability (Thimbleby, 1990).

5. FUNCTIONAL ARCHITECTURE

GENITOR consists of three major subsystems: the
reusability manager, the authoring subsystem and the
execution subsystem (Figure 6). The first is used for
storage, maintenance, and retrieval of application
parts. The authoring subsystem is used for applica-
tion development, while the execution subsystem
provides a prototyping facility to authors and facili-
tates the integration and packaging of the applica-
tion.

To compile declarative knowledge, authors must
use the LUs of the reusability base and develop the
hypermedia ALUs by assigning attributes to them
that describe their role within the application. This
is a time-consuming process which becomes even
lengthier if no suitable monomedia LUs exist in the
reusability base and have to be developed from
scratch. The development of the procedural knowl-
edge base requires different authoring skills, and its
duration depends on the expertise of the authors
with respect to the design of the methodology ele-
ments. The shortest authoring phase is the definition
of the pedagogical aspects of the application, which
include the definition of the learning cycle by select-
ing the stages and the stage types that will be
included in the application, together with the special

A. Kameas and P. Pintelas

AUTI-KIR - MIX - STUOENT

,----------- 4 ------------~
: TUTORING INTERFACE I .___-________________----_.

REUBABILITV
BASE

ln~tructlaasl Identlflcatlon,
blstorg and
perf ornanca

q B APPLICATION data

LUS_
methodology.

y - STUDENT

ALUa. ENVIRONMENT
staga tamplstes mathodologg,

iaatructlonal data

REUSABILITY AUTHORING

tlANAGER SUGSYSTEtl

______~__________________ # __________ _.
I 1 AUTHORING INTERFACE 0 ‘;
.--____________ ______________________

i
AUTHOR

Figure 6. The functional architecture of GENITOR.

characteristics (pedagogic tasks and training opera-
tions) of each.

5.1 The Reusability Manager

Authors can develop learning material that is not
pertinent to any application and store it in the
reusability base for subsequent use. For the time
being, LUs, stage templates, and methodology tem-
plates can be archived; the concept will be extended
in the future to support all kinds of learning mate-
rial that may be used in an application developed
with GENITOR.

This subsystem includes a set of learning unit
editors that may be used for the construction of
monomedia LUs. Currently, LUs of types text, pic-
ture, and test are supported. Using the database
archiver, authors may archive each LU. Executable
programs are regarded as LUs of type external. The
body of an LU is automatically copied to the appro-
priate directory, and the system produces an internal
identification code to uniquely identify each unit.
System designers have already included in the
reusability base one template for the type of
methodology that can currently be used and seven
stage templates, one for each available stage type.
With the tools of this subsystem, only the content
and the objective attributes of application parts can
be described; behavioral attributes and associations

daisy
Rectangle

Presentation of GENITOR

can only be described in the context of an applica-
tion, by using tools of the authoring system.

5.2 The Authoring Subsystem

The authoring subsystem of GENITOR includes a
set of highly interactive tools that are controlled by
the authoring subsystem manager, which constantly
monitors interaction and is responsible for the over-
all control of authoring actions. The application
configuration manager is used to describe general
application features, such as title, author, version,
etc., as well as the intended configuration of the
application.

Each application includes its own domain base,
which contains both procedural and declarative
knowledge. The methodology manager is the author-
ing interface of MES. Using it, authors can perform
an elementary knowledge engineering process, in
order to describe:

the structure (static contents) of the methodology,
by retrieving the methodology template from the
reusability manager and then specifying all the
levels of methodology tasks and subtasks, the ac-
tivities that make up each of them, and the arti-
facts that are produced as a result of the execution
of each activity. Based on this description, MES
can produce at authoring time the inheritance
relations among the various elements of the
methodology.

the special vocabulary used by the methodology
at-hand (that is, the appropriate terms that will be
used in place of the general-purpose and system-
provided “methodology”, “activities”, “artifacts”,
etc.). These will be appropriately displayed by MES
during ITS execution.

the ordering of the tasks and activities (dynamic
behavior of the methodology). Instead of specify-
ing some explicit order, authors need only de-
scribe a prerequisite relation among artifacts, by
specifying which attributes must have already been
produced in order to be possible for a new artifact
to be produced. Based on this description, MES
will be able to order the methodology tasks and
activities at run time and decide which one should
be carried out next.

The declarative knowledge of the application is
constructed by combining LUs. Authors have to
retrieve such monomedia units from the reusability
base, relate them to the application context and
combine them into hypermedia units (ALUs) by
forming objects that act as hypermedia unit headers.

J. SYSTEMS SOFlWARE 241
1997; 36233-245

These objects include attributes that are handled/
evaluated by corresponding methods; authors select
which attributes are to be associated with an object
out of a set of available attributes with system-de-
fined behavior. Using the domain manager, the ap-
plication domain base can be constructed by includ-
ing author-defined ALUs consisting of hypermedia
headers and of the associated monomedia units. For
the sake of completeness and for prototyping pur-
poses, the system provides units with “null behavior”,
which are executed in place of missing or damaged
units.

GENITOR provides a set of tools that may be
used to define the learning cycle of the application.
Authors must use the discourse manager to produce
the application script file, where the learning cycle
of the application is described, together with the
prerequisites and termination criteria of each stage
in the cycle. Then, for each stage of the learning
cycle, authors have to retrieve the corresponding
stage template from the reusability base, and then
use the instructional manager to specify the applica-
tion-dependent attributes of the stage, like title and
configuration, the pedagogic functions (strategic
states) that will be carried out by the stage, and the
operations that will be offered to the trainees during
execution of the stage (tactical states).

5.3 The Execution Subsystem

GENITOR supports the building of a library of
training applications by using the same runtime sup-
port system for each of them. A result of this con-
cept is the application menu that is presented to the
application users. Before execution of an application
can commence, the users’ names and intended usage
mode must be declared.

Each trainee can follow an individual learning
trajectory, always within the limits set by the author,
by selecting the next stage to be executed. After
execution of a stage terminates, the system presents
the trainees with a list of all the stages that have
been executed, having the next stage in the se-
quence highlighted. The trainees can accept the
proposal of the system, make a different selection,
or restart the application.

The part of MES that is included with every
application is responsible for teaching the procedu-
ral knowledge of the application and presents the
trainees with a simulation of the methodology to be
taught. The dialog is based on a constrained version
of problem solving which engages the trainees in a
game-like simulation (Burton and Brown, 1982): the
problem posed each time is to find the correct

daisy
Rectangle

242 J. SYSTEMS SOlTWAFE
1997; 36933-245

activity that must be taken next in order to advance
inside the simulation of the methodology evolution.
The choice must be made among the set of all
activities that make up the methodology. Correct
choices are awarded with GREs (GRades of Excel-
lence). Depending on the stage type, MES operates
in three modes: guiding, coaching, evaluating.

In the first mode, the role of MES is to simply
present the procedural knowledge to the trainees.
To this end, MES conducts itself a simulation of the
methodology evolution by selecting each time the
correct activity. The progress within the methodol-
ogy is visualized to the trainees using animated
charts and diagrams. In coaching mode, MES sup-
ports a learn-by-discovery process of the methodol-
ogy. It is the trainees who must now select the next
activity from the set of all methodology activities.
The role of MES is to coach them (Nawrocki, 1987)
by commenting on their selections, responding to
their commands, and assuming control when the
trainees appear to be lost. Finally, during evaluating
mode, MES leaves control of the simulation entirely
at trainees’ hands and simply judges their selections.

DES is responsible for presenting the ALUs to
the trainees based on the requirements of the in-
structional strategy because these are encoded in
the strategic states of the stages and on the at-
tributes of the ALUs, after evaluating them.

Each stage manages its own environment and
determines its state of completion. The user inter-
face of any stage contains at most three areas:
procedural, declarative, and utility (Figure 7). The
procedural area mediates interaction between MES

A. Kameas and P. Pintelas

and the trainees (it is the large white rectangle area
that contains small boxes in Figure 7). It conveys
their choices to MES and presents its response. The
declarative area is used by DES to display the appli-
cation ALUs at the trainees’ choice (the bottom
rectangle area in Figure 7, which contains titles of
ALUs). One of these two areas may be missing from
the interface of some stage types. The utility area
represents all the tutoring operations and functions
that are available to the trainees, as these are speci-
fied by the tactical state objects of the stage (the top
line of dark rectangles in Figure 7).

Every application automatically constructs a stu-
dent environment for each trainee. Within this envi-
ronment, the application records trainees’ identifi-
cation, performance, progress and statistical data. In
addition, the application maintains an elementary
student model that classifies the trainees according
to their overall performance and their latest re-
sponse. This model is used by both DES and MES to
reflect the knowledge levels and the misconceptions
of the trainees. Collected performance data are made
available for evaluation to tutors through the admin-
istrator environment, which is accessible by using an
author-defined password.

6. VALIDATION OF DESIGN

GENITOR can be used by authors as a stand-alone
development environment. Developed applications
can be used for self-education, for group training, or
even as “on-the-spot consultants”. In order to vali-
date an earlier version of GENITOR (called

Figure 7. The user interface of an application stage.

daisy
Rectangle

Presentation of GENITOR J. SYSTEMS SOFIWARE 243
1997; 36933-245

GEPRIAM), two applications have been designed
and developed (Pintelas et al., 1992; Kameas and
Pintelas, 1994): METHODMAN II+ and MAR-
KETMAN. The former is a four-hour self training
application that aims at teaching the MEDOC
methodology for software project management.
METHODMAN II+ addresses the needs of engi-
neers and technicians participating in innovative
projects, as well as project managers who adminis-
trate such projects. The latter is an ITS for training
in the use of marketing strategies which is addressed
towards marketing executives or salespeople.

METHODMAN II+ was developed by a three-
person team, which included members of the GENI-
TOR design team. It uses (with slight adaptations)
the ALUs and learning cycle of METHODMAN I,
an ITS that was initially developed to demonstrate
the need for training applications of this kind. As a
result, development and validation of METHOD-
MAN II+ took less than one personmonth, while
METHODMAN I took over two personyears to
develop (without the use of a generator, though).

MARKETMAN was designed and developed in
about three personmonths by a three-person team
which included an expert in marketing and two
computer experts. It took a short course on the
functionality of GENITOR to make them familiar
with the system. The application uses the same
learning cycle with METHODMAN II+ but an
entirely disjoint set of LUs and ALUs.

The speedup in development time that results
from the use of the reusability base depends on
which part of the application is totally or partially
reused. The design, development, verification, and
delivery of an entirely new intelligent tutoring appli-
cation of METHODMAN II+ size should take at
most six personmonths.’

The development of those two applications estab-
lished the capability of GENITOR to produce intel-
ligent training applications on diverse domains hav-
ing in common only the requirement that there
exists a structured representation of the methodol-
ogy to be taught (Pintelas et al., 1992); development
was greatly facilitated by the inclusion of a method-
ology template in the reusability base. Furthermore,
the provision of stage templates relieved much of
the burden from authors during the specification of
the instructional features of the application. How-
ever, GENITOR tends to be overprotective, per-

5 This effort should not be compared with that required by
current authoring/presentation systems; GENITOR is an ITS-
Generator.

forming too many data and application integrity
tests.

7. CONCLUSIONS

In this article, the interaction model and functional-
ity of GEMTOR, an ITS-generator that addresses
the needs of noncomputer expert authors were pre-
sented. GENITOR can be used as a stand-alone
development environment by authors who need to
encode their domain expertise in an application as
quickly and efficiently as possible, without being
much concerned with instructional issues.

The system was designed using object-oriented
analysis and design techniques, while the IDFG
model was used for the design of the user interface.
The authoring subsystem was developed using Ror-
land Turbo Pascal v 7.0 under MS-DOS v 6.2 in a
PC-486 platform.

The separation of the development process from
the application execution process, together with the
adoption of object-oriented design techniques per-
mitted the incremental system development, led to
an open-ended architecture, supported the notion of
an “application library”, and will provide an easy
maintenance/upgrade process. In this way, the
problem of upgrading old applications can be easily
solved, and the capabilities of the applications can
be improved over time to meet emerging technology
standards. The user interface of the system was
developed with the TurboVision environment in-
cluded in Turbo Pascal. The execution subsystem
was developed under Turbo Pascal as well. In this
case, object-oriented techniques were not adopted
because this part of the system is rather computa-
tion than data-intensive. The authoring part of the
two expert systems was developed using TurboVi-
sion; knowledge representation is frame-based, and
their execution part was developed under Turbo
Prolog v 2.0.

Currently, an effort is under way to have the
system run under Microsoft Windows. In the next
version of the system, several modes of operation
(e.g., novice, expert, etc.) will be provided, with dif-
ferent grouping of user actions for each. Other
improvements considered by the design team are the
generalization of the functionality of the reusability
base, so that application parts of any complexity and
nature could be archived and the provision of a
fully-functioning student model. All these extensions
must impose the least possible cognitive load on the
authors that use GENITOR, in any case, this was
the driving guideline of the current design, as well.

daisy
Rectangle

244 J. SYSTEMS SOFTWARE
1997; 36933-245

A. Kameas and P. Pintelas

ACKNOWLEDGMENTS

The first prototype of GENITOR was developed under the
name of GEPRIAM within project GESEM of the EU program
COMElT II (contract no 90/3/5081/Cb). The authors would
like to thank the project teams from SYSECA SA, Ecole
Nationale Superieure des Techniques lndustrielles et des
Mines d Ales, and Business School of the John Moores
University of Liverpool for their efforts and contributions.

REFERENCES

Aiello, L., and Micarelli, A., SEDAF: An Intelligent Edu-
cational System for Mathematics, Applied Artificial Intel-
ligence, 4(l), 15-37 (1990).

Ales& S., and Trollip, S., Computer-Based Instruction:
Methods and Development, Englewood Cliffs, Prentice
Hall, 1991.

Brown, J. S., Burton, R. R., and Clancey, W. J., Pedagogi-
cal, natural language and knowledge engineering tech-
niques in Sophie I, II, and III, in Intelligent Tutoring
Systems, (D. Sleeman and J. S. Brown, eds.), Academic
Press, 1982.

Burton, R. R., and Brown, J. S., An investigation of
computer couching for informal learning activities, in
Intelligent Tutoring Systems, (D. Sleeman and J. S. Brown,
eds.), Academic Press, 1982.

Carroll, J. M., and Rosson, M. B., Paradox of the active
user, in Interfacing Dzought, (J. M. Carol& ed.), MIT
Press, 1987.

Clancey, W. J., Methodology for building an Intelligent
Tutoring System, in Arti$ial Intelligence and Instruction,
(G. P. Kearsley, ed.), Addison-Wesley, 1987.

Curtis, B., Kelhier, M. I., and Over, J., Process Modeling,
Communications of the ACM, 35(g), 75-90 (1992).

Derks, M., and Bulthuis, W., A framework for authoring
tool integration, in Learning Technology in the European
Communities, (S. A. Cerri and J. Whiting, eds.), Kluwer
Academic Publishers, pp. 549-561, 1992.

Duchastel, P. C., Cognitive Designs for Instructional De-
sign, Znstmctional Science, 19(6), 437-444 (1990).

Gagne, R. M., Briggs, L. J., and Wager, W. W., Principles
of Instructional Design, Holt, Rinehart and Winston,
Chicago, 1988.

Gerogiannis, V., Giakovis, D., Pintelas, P., and Kameas,
A., Intelligent systems for education: an overview. Tech-
nical Report TR 93.10.21, Department of Mathematics,
University of Patras, Patras 26500, Greece, 1993.

Gustafson, K. L., Survey of Instructional Development
Models, ERIC Clearinghouse of Information Re-
sources, Syracuse University, 1991.

Kameas, A., Papadimitriou, S., Pintelas, P., and Pavlides,
G., IDFG: An Interactive Applications Specification
Model with Phenomenological Properties, in Proceed-
ings of the EUROMICRO 93 Conference: Open System
Design, Barcelona, Spain, September 6-9, 1993.

Kameas, A., Gerogiannis, V., Diplas, K., and Pintelas, P.,
Encapsulating Multiple Perspectives in Interaction

Specification, in Proceedings of the EUROMICRO 94
Conference: System Architecture and Integration, Liver-
pool, United Kingdom, September 5-8, 1994.

Kameas, A., and Pintelas, P., GENITOR: a GENerator of
Intelligent TutORing application. Technical Report TR
94-01, Division of Computational Mathematics & Infor-
matics, Department of Mathematics, University of Pa-
tras, Greece, 1994.

Keller, A., When Machines Teach: Designing Computer
Courseware, Harper & Row Publishing, 1987.

Merill, M. D., Component Display Theory, in Instructional
Design Theories and Models: An Overview of their Cur-
rent Status, (C. M. Reigeluth, ed.), Hillsdale, Lawrence
Erlbaum, pp. 279-333,1983.

Mispelkamp, H., Generic tools for courseware authoring,
in Learning Technology in the European Communities, (S.
A. Cerri and J. Whiting, eds.), Kluwer Academic Pub-
lishers, pp. 585-593, 1992.

Nawrocki, L. H., Artificial Intelligence applications to
maintenance training, in Artificial Intelligence and In-
struction, (G. P. Kearsley, ed.), Addison-Wesley, 1987.

Olimpo, G., Choiccariello, A., Tavella, M., and Trentin,
G., On the concept of reusability in educational design,
in Learning Technology in the European Communities, (S.
A. Cerri and J. Whiting, eds.), Kluwer Academic Pub-
lishers, pp. 535-549,1992.

Otsuki, S., and Takeuchi, A., Intelligent CAL system based
on teaching and learner model, in Computers in Educa-
tion, (K. Duncan and D. Harris, eds.), Elsevier, 1985.

Philips, P., and Nunn, M., The relationship between PETE
and PCTE, in Learning Technology in the European
Communities, (Cerri and Whiting, eds.), Kluwer Aca-
demic Publishers, pp. 563-571,1992.

Pintelas, P., Kameas, A., and Crampes, M., Computer-
based Tools for Methodology Teaching, in Proceedings
of the 34th International ADCZS Conference: Empowering
People Through Technology, Norfolk, VA, November
g-11,1992, pp. 341-355.

Pintelas, P., and Kameas, A., Experience From Using
Information Technology in the Training of Managers,
European Journal of Information Systems, x2), pp.
129-137 (1993).

Reisig, W., A Primer in Petri Net Design, Springer Berlin
Heidelberg, 1992.

Rickel, J. W., Intelligent Computer-Aided Instruction: A
Survey Organized Around System Components, IEEE
Transactions on Systems, Man and Cybernetics, 19(l), pp.
48-57 (1989)

Roblyer, M. D., Fundamental problems and principles of
designing effective courseware, in Instructional Design
for Microcomputer Courseware, (D. H. Jonassen, ed.),
Lawrence Erlbanrn, 1988.

Spector, J. M., and Muraida, D. J., An intelligent Frame-
work for the Creation of Effective Computer-Based
Instruction, in Proceedings of the 34th ZntemationalAD-
CIS Conference: Empowering People Through Technology,
Norfolk, VA, November g-11,1992, pp. 373-379.

daisy
Rectangle

Presentation of GENITOR

Thimbleby, H., User Interface Design, ACM Press, 1990.
Uden, L., CBT the Soft Way, in Proceeding of the 34th

International ADCIS Conference: Empowering People
Z&rough Technology, Norfolk, VA, November g-11,1992,
pp. 381-400.

Wallsgrove, R., Multi-strategy authoring toolkit for intelli-
gent courseware: better courses for less, in Learning
Technology in the European Communities, 6. A. Cerri
and J. Whiting, eds.), Kluwer Academic Publishers, pp.
573-5841992.

Woolf, B. P., Theoretical frontiers in building a machine

J. SYSTEMS SOFlWARE 245
1997; 36933-245

tutor, in Artij%Yal Intelligence and Instruction, (G. P.
Kearsley, ed.), Addison-Wesley, pp. 229-267, 1987.

Yazdani, M., and Pollard, D., Multilingual aspects of a
multimedia database Of learning materials, in Learning
Technology in the European Communities, (S. A. Cerri
and J. Whiting, eds.), Kluwer Academic Publishers, pp.
495-508, 1992.

Zaharakis, I., Kameas, A., and Pintelas, P., MeT: The
Expert Methodology Tutor of GENITOR, The EU-
ROMICRO Journal: Microprocessing and Mcroprogram-
ming, 40, pp. 855-860 (1994).

daisy
Rectangle

daisy
Rectangle

daisy
Rectangle

